Digital Signature Standard Validation System (DSSVS)
User's Guide

(For Version 2.3 of the DSSV S Software Tool)

Original: June 20, 1997
Last Modified: May 13, 1999

Jm Foti
Information Technology Laboratory
Nationa Institute of Standards and Technology

1.

2.

3.

4.

Table of Contents

INTRODUGCTION .. e e e e e e 4
1.1 Purposeof the DSSV S 4
1.2 Design Philosophy oo 4
1.3 High-Level Operation of the DSSVS e 5
1.4 Vaidation Test Completion 5
DSSVSTEST DESCRIPTIONS e 7
2. SHSO TS . . oot ittt 7
211 Messagesof VaryingLength 7
2.1.2 Selected LONg MESSA0ES . . .o ittt e e e 7
2.1.3 Pseudorandomly Generated MeSSages oot 7
2.2 DSOS TS . . o it ittt e 7
220 Primality Test . ..o 8
222 Generation Of p,gand go oot 8
2.2.3 Key Generation for Privateand PublicKey Pairs 9
2.2.4 Signature GENErationottt e 9
225 Signature Verificationt 10
2.2.6 Verification of Correct Generationof p,gq,andg 10
DSSVS OPERATION .. e e 11
3L CONCEP . . . 11
3.2 Windowsinthe DSSVSTool e 11
321 MaNDSSVSWINAOWo 11
3.2.2Vdidation Information Window i 13
3.23DSSVdlidation Suite Windowt 13
B2ATeSt WINAOWot e 13
3.25 Configuration WINdOWot 14
3.2.6Long Job StatusWindow 14
33 New Validation 15
34 CoNfigUrE A TSt . . .ttt 16
3.5 Generate Request File (and FactsFile) i . 17
36 Veify Response Fileo 20
3.7 Supplemental FIleS e 23
MESSAGE FORM AT S ..o e e 24
A1 CONVENLIONS . . .ottt e e e e e e e e e e e e e e e 24
42 Message Data TYPES . . . ot 24
4.3 Syntax for the SHSOpLion e 25
431 SHSTYPE L ..o 26
432 SHS TYPE 2 . oo 26

43,3 SHS TYPE S .o 27
4.4 Syntax for the DSS TestSot 27

A5 FIleFormalso 27
APPENDIX A: Vadidation Information FileFormat, 28
APPENDIX B: ResultsFileFormat e 30
APPENDIX C: Request FIle FOrmats e 31
APPENDIX D: Response FleFormatsot 34
APPENDIX E: Descriptionof the SHSType3Test ...t 38

1. INTRODUCTION

ThisUser’s Guide isintended to assist persons who are conducting validation tests for conformance
to Federa Information Processing Standard Publication (FIPS PUB) 186, Digital Sgnature Sandard
(DSS), and FIPS PUB 180-1, Secure Hash Sandard (SHS).

This section provides the purpose, design philosophy, and high-level description of the operation of
the DSSVS.

1.1 Purpose of the DSSVS

The Nationd Indtitute of Standards and Technology’ s Digital Signature Standard Validation System
(DSSVS) tests message authentication and integrity devices for conformance to two data
authentication and integrity standards. Federal Information Processing Standard Publication (FIPS
PUB) 186, Digital Sgnature Sandard (DSS), and FIPS PUB 180-1, Secure Hash Sandard (SHS).
The DSSVSisdesigned to allow atester to perform testing on message authentication devices which
are located remotely from the tester.

Note that an implementation might not incorporate both the SHS and DSS. Therefore,
implementations will either be tested for the SHS only, or for both the DSS and SHS.

1.2 Design Philosophy

The DSSVS is designed to allow testing of message authentication devices from locations remote
tothe DSSVS. The DSSV Stests can be performed on a message authentication device at the remote
site and the results communicated to the DSSV'S in the form of response files.

NIST validation programs are conformance tests rather than measures of product security. NIST
validation tests are designed to assist in detection of accidental implementation errors, and are not
designed to detect intentional attempts to misrepresent conformance. Thus, validation by NIST
should not be interpreted as an evaluation or endorsement of overall product security.

A message authentication device is considered validated for a test option when it passes the
appropriate DSSV S tests. For each test that is passed, a notation will be made on the validation
certificate. DSSV Stesting is via statistical sampling, so validation of an option does not guarantee
100% conformance with the option in the standards.

Laboratories which are accredited by the National Voluntary Laboratory Accreditation Program
(NVLAP) manage the testing process for the DSS and SHS. A laboratory is responsible for
generating values to be used in testing the implementation, and then checking that the
implementation’ s results are correct. Itisup to the laboratory to determine whether the actual testing

will be done at the laboratory or at the vendor’ssite. In the latter case, the vendor will be responsible
for using the identified implementation to generate responses for al applicable tests.

The intent of the validation processisto provide rigorous conformance testing that can be performed
at modest cost. NIST does not attempt to prevent a dishonest vendor from purchasing a validated
implementation and validating that implementation as the vendor's own product. However,
customers who wish to protect themselves against a dishonest vendor could require that the vendor
revalidate the implementation in the customer’ s presence.

1.3 High-Level Operation of the DSSVS

I n batch mode, the operation of the DSSV S is straightforward. A vendor submits an application to
a laboratory to validate an implementation of the DSS and/or SHS. Included in the required
information is an indication of the desired tests. Based on the information in the vendor's
application, the DSSV S creates a series of ASCII files that contain the appropriate information for
each test (with a separate set of files for each test). The information is supplied by the DSSVSto
the DUT for each test in a“request” file, with “.req” asthe extension. Thisfile is then forwarded
to the entity performing the test. The vendor translates the requests into a form that can be accepted
by the device under test (DUT), enters the requests, collects and formats the corresponding results
(termed “responses’), stores them in a series of “response’ filesin ASCII format, and forwards the
response file to the DSSV'S for checking. Each response file shall have the same filename as its
corresponding request file, but with “.rsp” as the extension.

In the event of afailure to validate, retesting may be performed. In this case, some data from the
previous set of tests may still be applicable. Thus, a vendor may wish to retain all data from a set
of tests until receiving notice of the disposition of the tests.

1.4 Validation Test Completion

When validation testing is complete, the tester should generate a results file, using the menu item
under “Utilities’, which summarizes the results of each test performed for a product (e.g., “ Signature
Generation: 80 out of 80 signatures generated correctly”, etc.). The generated results file has an
“.out” extentsion. At thistime the tester should provide NIST with the following information:

1. Name and Version Number of the Tested Implementation (DUT),

2. Vendor Name, and Point of Contact Information,

3. Processor and Operating System with which the DUT was tested, if the DUT is
implemented in software,

4. Brief description of the DUT, or the product/product family in which the DUT is
implemented by the vendor (2-3 sentences), and

5. Electronic copy of:

o the Validation Information file,

o al Request files,

o dl Factsfiles,

o all Response files, and

o the Results file, which summarizes the test results; the tester should be sure that
this information accurately reflects the test results, since it will be used by NIST in
determining whether or not a validation certificate will be issued.

The above information will be saved by NIST, and used to generate a validation certificate, which
will be returned to the vendor via the tester. In addition, an entry will be added to the DSS/SHS
Validation Ligt (or the SHS Vdidation List, if only SHA-1 tests are performed) which is maintained
by NIST.

2. DSSVSTEST DESCRIPTIONS

2.1 SHSTests

There are three areas of the Secure Hash Standard for which the DSSV'S provides conformance
testing: messages of varying length, selected long messages, and pseudorandomly generated
messages. Sinceit ispossible for aDUT to correctly handle the hashing of byte-oriented messages
(and not messages of a non-byte length), the SHS tests each come in two flavors.

2.1.1 Messages of Varying Length

An implementation of the SHS must be able to correctly generate message digests for messages of
arbitrary length. The DSSV S tests this function by supplying the DUT with 1025 pseudorandomly
generated messages with lengths from 0 to 1024 bits (for aDUT that only hashes byte-oriented data
correctly, 128 messages of length 8, 16, 24,...,1024 bits will be supplied). The DSSV'S concurrently
generates its own message digests on those same messages supplied to the DUT, and stores those
vaues. The DUT generates message digests for each message. The DSSV S then compares its stored
message digests to the ones generated by the DUT. If all messages compare correctly, then this test
IS passed.

2.1.2 Selected Long Messages

The DSSV Stestsfor correct generation of selected long messages. A list of 100 messages, each of
length > 1024, is supplied to the DUT, which then generates message digests for each. If the DUT
only handles byte-oriented data correctly, then each of these messages is a multiple of 8 bits in
length. The DSSV S regenerates the message digests and compares them to the ones generated by
the DUT.

2.1.3 Pseudorandomly Generated Messages

The DSSV S tests the correctness of message digests generated from pseudorandomly generated
messages by supplying a seed M of length 420 bits. The DUT uses this seed to generate 100
message digests using a specific procedure; the details of this procedure are in Appendix E. The
DSSV S regenerates the message digests using the same procedure and compares each of the 100
message digests with those generated by the DUT.

2.2 DSSTests
There are six areas of the DSS for which the DSSV'S provides conformance testing: primality

testing, generation of the parameters p, g, and g, verification of another implementation’s correct
generation of p, q, and g, generation of public/private key pairs (X,y), Signature generation, and

signature verification. For those tests that involve the generation of either a private key, x, or the
pseudorandom signature value, k, the DSSVS alows for implementations which use various
pseudorandom number generators. There are three such generators. two are found in Appendix 3
of FIPS 186, which use SHA-1 and DES, and athird is found in Appendix C of ANSI X9.17.

As mentioned above, the DSSV'S provides a test for the verification of p, g, and g when these
parameters have been generated elsawhere and are imported into a cryptographic module. Although
the DSS does not specificaly address importation of these parameters, it does require that their
generation be accomplished using either Appendix 2 of the DSS or other FIPS-approved security
methods. In order to guarantee that imported parameters have been generated correctly, thistest is
recommended by NIST.

For themodulusszelL =512+ 64 * 1,0 < i < 8, there are 9 permissible discrete vaues, ranging from
512 (i = 0) to 1024 (i = 8). Although maximum interoperability between implementations of the
DSSisassured if dl 9 vaues are used, some implementations may only include a subset. Therefore,
for the purpose of generdlity, it is left to the DUT vendor to indicate which subset of values are
implemented. Each of the DSS tests allows the tester to generate parameters and request files for
any combination of those modulus sizes.

The following subsections provide an overview of the DSS test areas.
2.2.1 Primality Test

The DSS does not require the use of a specific primality test. However, arobust test is required by
the DSSfor usein generating p and q using the routine in Appendix 2.2 of the DSS. The test given
in Appendix 2.1 of the DSSis suitable for this purpose. Regardless of which primality test is used,
an implementation should include a function prime(w) that accepts an integer w with 2 < w < 2-MAX
(where LMAX equds the maximum modulus size that can be handled by the DUT) and returns true
if wis prime and false otherwise.

The DSSV S tests this function by supplying between 3 and 15 numbers per modul us size (depending
on the mod sizes selected for testing - see table under “Primality Test” in Section 3.5), of which
several values are selected to be non-prime values (as determined by using the primality test given
in Appendix 2.1 of the DSS). It is left to the DUT determine the primality of each one of those
numbers. The DUT returns its determination of the primality of each number to the DSSV'S, which
compares its own stored results with the DUT response.

2.2.2 Generationof p,gand g
The DSS requiresthat primes p and q be generated using a FIPS-approved method. Such a method

is described in Appendix 2.2 of the DSS. The DSS aso requires that any implementation be able
to correctly generate the parameter g for a pair (p,q). Correctness of g can be determined by

inspecting the parameter h used to generate g and verifying that 1 < h < p-1 and g = h(p-1)/g mod
p>1.

Based on the mod sizes selected for testing, the DSSV S determines how many pqg triples shall be
tested for each mod size (see table under “Primality Test” in Section 3.5). The DUT then generates
the required number of sextets (SEED, q, p, counter, h, g) for each modulus size to be tested, and
sends the resultsto the DSSVS. The DSSV S checks the results by using the information in each of
the sextets to recompute the pqg triple, using the method is described in Appendix 2.2 of the DSS.
Note: Thistest cannot be performed if the DUT cannot provide the DSSVS with values for SEED,
counter, and h.

2.2.3 Key Generation for Private and Public Key Pairs

The private key x must be generated by a FIPS-approved method. At present, the only two such
methods of generating x are the technique of Appendix 3.1 of the DSS and the use of the
pseudorandom number generator specified in Appendix C of ANSI X9.17, “Financiad Ingtitution Key
Management (Wholesale)”. The DSS-based method can use either the SHA-1 (as described in
Appendix 3.3 of the DSS) or the Data Encryption Standard (DES) (as described in Appendix 3.4 of
the DSS) as a pseudorandom source to generate a 160-bit output. This pseudorandom source is
required for the generation of x. Therefore, it is assumed that al implementations of the DSS will
use either 1) DSS with SHA-1, 2) DSS with DES, or 3) the ANSI X9.17 method as the
pseudorandom source. Depending on which pseudorandom source is selected, the information
generated by the DUT will differ.

It isaso assumed that the public key y, which is directly related to x, will be computed by the DUT.

For each modulus size selected, the DSSV S tests the generation of 10 values of x, by sending the
DUT the modulus sizes and pseudorandom number generation method expected. For those
implementations which can import pag triples and use them for key generation, then the DSSV S will
also provide the DUT with a pqg triple for each modulus size selected.

The DUT then generates the required x and y values, and passes them to the DSSVS. If the DUT
is able to output the values XKEY and X SEED used in generating X, then these are also included in
the response file, and the DSSV'S checks each value of x through re-calculation. If XKEY and
XSEED are not available, then only y can be re-calculated using x, g, and p.

2.2.4 Signature Generation

An implementation of the DSS must be able to correctly generate the (r,s) pairs that represent a
digital sgnature. For each modulus size, the DSSV S supplies 10 messages to the DUT, along with
a pqg triple and x value, assuming the DUT can import those values. The DUT uses previously
generated or DSSV S-supplied parameters to generate the corresponding signatures and returns them
to the DSSVS. If the internal parameter k used during signature generation can be exported, then

this value, in addition to the signature, is returned to the DSSVS. If k is present, the DSSV S re-
calculates the signature; if k is absent, then the DSSV'S implicitly determines that the signature is
correct by performing signature verification using the stored public key.

2.2.5 Signature Verification

The DSSV S tests implementations for the ability to recognize valid and invalid signatures. For each
modulus size, the DSSV'S generates 3 x and y key pairs. The number of pseudorandom messages
signed using each X is based on the number of mod sizes selected for testing (see table under
“Sgnature Verification Test” in Section 3.5). Some of these signatures are altered so that signature
verification should fail. The messages, signatures, pqg triples, and y values are then forwarded to
the DUT. The DUT then verifies the signatures and returns the results to the DSSVS, which
compares these received results with its own stored results.

2.2.6 Verification of Correct Generation of p, g, and g

The DSS requires that the prime parameters p and g be generated by a FIPS-approved method. The
only such method is that specified in Appendix 2.2 of the DSS. Therefore, if a cryptographic module
accepts values of p, g, and g from another module, it is assumed that Appendix 2.2 of the DSS was
used to generate those values. For each modulus size, the DSSV S supplies a specified number of
sextets (SEED, q, p, counter, g, h) to the DUT - this number is based on the mod sizes selected for
testing (see table under “Primality Test” in Section 3.5). Some of the values in some of the sextets
are modified before being passed to the DUT. The DUT verifies the correctness of each sextet, and
returns the results to the DSSV'S, which compares these received results with its own stored results.
Note that the implementation of atest for correct generation of these parametersis not required by
the DSS. However, if a cryptographic module implements such a test, the DSSV S test will verify
its accuracy.

10

3. DSSVSOPERATION
3.1 Concept

The DSSVS keeps track of each validation by storing relevant information, such as the product
name, vendor, vendor address, chosen tests, and parameter settings in avalidation information file
with a“.inf” extenson. Oncedl the information has been entered, the user can then select atest (or
tests) to run, and generate request files that will ultimately be sent to the vendor; these files have
names that correspond with the applicable test, but all of these fileshave a“.req” extension. At the
same time that a request file is generated for the vendor, a “facts’ file, with a*®.fax” extension, is
generated for use by the DSSV'S during response file verification. It has the same name as the
corresponding request file. When the DUT is used to generate test results, based on the information
in the request file, aresponse file with a“.rsp” extension is constructed. Thisfile isthen used by the
DSSVS, in conjunction with the corresponding facts file, to verify the correctness of the DUT’ s test
results. Notethat aDSSV S user can create a“test” response file in many cases by using information
from the corresponding facts file, rather than using a separate implementation to generate values.

The vdidation information file (“.inf”) aso contains status information for each of the different tests.
This information tells the user if the test settings have been configured, if a request file has been
generated, and whether the test results have been verified. A table with checked boxes conveys this
information in the validation information window.

The validation information file also contains more detailed information about the test results,
including the number of test values, number of tests passed/failed, etc.

3.2 Windowsin the DSSVS Tool

There are severa basic windows that are accessible in the DSSV'S, and they are described in the
following sections.

3.2.1 Main DSSV S Window

The Man DSSVS Window has two menus, “File’ and “Utilities’. The “File’ menu has the
following menu items:

* New: creates a new validation information (.inf) file,
* Open: opens an existing validation information (.inf) file,
» Save: savesthe state of the current validation to disk in avalidation information (.inf) file,

» Save As. saves the current validation in a file whose path and filename are specified by the
user,

11

* Validation Info: displays the setup of the current validation, including vendor and
implementation information and the status of the various tests.

* Exit: closesthe DSSVS program. If avaidation has been updated, but those changes have not
been saved, then the program will prompt the user to save those changes, before exiting. Note
that if the application is closed using the “ X" button on the title bar of the Main window, then
the application will be exited without saving any changes!

The “Utilities” menu has the following menu items:

» Generate Results File: Based on results of verifying the various test results, this will generate
a “results” file of the same name as the opened validation information file, but with an “.out”
extension. A sample results file may be found in Appendix B.

» Generate PQG: Allows auser to generate afile, “pqg_file”, that contains sets of p, g, g, h,
counter, and seed. The user can have the tool generate from 1 to 10 pqg sets for any number of
modulus sizes (512,..., 1024). Asinput, the user is asked to enter 40 hex characters astheinitia
seed. This task becomes more time-consuming as the modulus size increases. A message box
displays how many pgg sets have been generated and requested, as well as the counter value for
the currect pgg set generation. The user can also cancel this operation. If thisis selected, then
the current pag set will complete its generation before the cancellation takes effect, and all of the
pag sets that were generated will be found in “pag_file”.

Note: A tester may cut and paste pqgg sets from various files to create different pgg_files. But
the tester isnot required to use a different pgg_file for each validation. 1t is suggested, however,
that new values be generated periodically, and that the pgg_file be modified accordingly.

» Generate Key Pairs. Generates afile, “keypairs.xy”, that contains any number of sets of p, g,
0, xkey, xseed, x, and y for al selected modulus sizes, based on one of three possible
pseudorandom number generation methods (SHA-1, DES, ANSI X9.17). Valuesfor p, g, and
g are obtained by default from “pqgg_file’. Note that thisis NOT the Key Generation Test.
However, values generated with this option can be used to create an example file to test the Key
Generation test of the tool.

» Generate Seed Value: Takes input characters, time between keystrokes, and the SHA-1 to
generate aseed vdue. This can be invoked when (x,y) key pairs are being generated, when it is
necessary to enter values for xkey and xseed. Note that this generates a 160-bit number in
accordance with the FIPS-approved pseudorandom number generation method specified in FIPS
186, Appendix 3.1, using “G from SHA” in Appendix 3.3. When “Generate’ is selected for
certain DSStests, and the tester is prompted to enter avalue for XKEY or XSEED, a button can
be selected which will invoke this “Generate Seed Vaue’ window in order to generate a
pseudorandom value for XKEY or XSEED.

12

3.2.2 Validation Information Window

When a validation information (.inf) file is selected - either with the “New” or “Open” menu item,
the Validation Information Window appears. This can aso be viewed by selecting the “Validation
Info” menu item. Thisiswhere the tester enters management information for the validation. On the
right side of the window, there is a* Status’ matrix, which includes checkboxes for each test that
indicate whether atest had completed the configuration, generation, or verification stage.

In the box for “filename’, the tester should indicate the path and filename for the validation
information file. This filename should have an “.inf” extension. Once the “OK” button is selected,
thiswindow is closed, and the name of the opened vaidation information file is listed in the title bar
of the Main DSSVS Window. At thistime, the DSS Validation Suite Window is displayed within
the Main DSSV'S Window.

The “.inf” fileisan ASCII file which can be manually edited, but it is best viewed and edited using
an application such as Windows WordPad, as opposed to Windows NotePad or Edit or Emacs. A
sample “.inf” file can be found in Appendix A.

Note: By default, a new file will be saved in the same directory in which the DSSVS executable
islocated. If a path name is specified for a file in another directory, you must first create that
directory outside of the DSSVS application (the tool will not automatically do this for you). If you
wish to use request, facts, and response files that are in that same directory as the information
file then click “OK” to close the Validation I nformation Window. Next, select “ Open”, then find
thevalidation information file that was just specified - thiswill set the selected directory, so that
the tool will place request, facts, and output files in the same directory as the validation
information file.

3.2.3 DSS Vadlidation Suite Window

This window appears within the Main DSSVS Window when a validation information file is
selected. It contains buttons for all seven possible tests (All three types of SHA-1 tests are handled
by sdlecting the“SHA-1" button.). Selecting a button will display the Test Window for a particular
test. These seven tests are listed in each of sections 3.4-3.6.

3.2.4 Test Window

This is used to individually handle each test. This window displays three buttons, “Configure”,
“Generate’, and “Verify”’, and gives abrief description of the test. It also displays three check boxes,
showing which of the above functions have been completed. “Configure” alows the tester to select
a) the modulus sizes for which the test will be run, b) bit- versus byte-oriented hashing, ¢) random
number generation method, etc. Once the “OK” button has been selected in the configuration
window, the configuration information is recorded in the “.inf” file and the corresponding check box
isnoted in the Test Window. |f any configuration information had been saved previously, then

13

it will beoverwritten! If thetester wishesto just view the old configuration information, and
not overwriteit, then the “ Cancel” button should be selected.

If a test has not been configured, then “Generate” cannot be performed for that test. When
“Generate’ is selected, two files are generated (for most tests), based on the information that was
configured. For a more detailed description of the “Generate” function, go to Section 3.5. The
addition of a check mark to the “Gen” check box in this window indicates that generation is
completed. For some tests, such as the Primality Test and SHA-1 Test, selecting “ Generate” will
result in a somewhat lengthy generation process, depending on how the test was configured. Only
after generation is complete will a check mark appear in the* Gen” box.

When both “ Conf” and “Gen” check boxes are marked, and a response file has been received, should
the “Verification” button be selected. For some tests, thiswill only require the comparison of vaues
in the facts and response files, and will be relatively quick. However, for the Generation of PQG
Vaues Teg, this process will berather lengthy. Once again, a check mark will appear in the “ Ver”
box when verification has been completed. More information on the “Verification” function may
befound in Section 3.6. Note: “Verification” can be run anytime there is aresponse file and a facts
file (where oneis necessary) in the same directory. Thisisimportant to mention, because if for some
reason the original configuration information is overwritten, this would not necessitate the generation
of new facts and request files, or require the DUT to create a new responsefile.

3.2.5 Configuration Window

When the “Configure” button is selected from a Test window, the Configuration window appears.
It allows the tester to select different options, based on information pertaining to a particular
validation. The configuration information is then used in the generation of request and facts files.

3.2.6 Long Job Status Window

This window will appear during the generation process of the Primality Test, aswell as during the
generation of PQG values, when this is selected from the Utilities menu item. It allows atester to
cancd thislengthy process, which will take effect once the next prime/non-prime or pgg set has been
generated. A progressindicator in this window shows the current counter value for the value being
generated (e.g., counter value for generating a pqg set as defined in FIPS 186, Appendix 2.2), the
current index of how many values have been generated, as well as the total number of valuesto be
generated.

3.3 New Validation

Before creating a new validation, the DSSV'S user should have the following information from the
vendor:

14

* the information listed in Section 1.4, items 1 through 3,

» alist of which modulus sizes are to be tested,

» alist of which tests are to be executed,

» whether or not the DUT can generate X values,

» whether the DUT or DSSV Sisthe source of PQG triplesfor key and signature generation tests,

» the pseudorandom number generation method used by the DUT to generate X and K values,
and

« for the SHA-1 implementation, whether the DUT can correctly hash messages of any bit-length
(< 2% bits), or just byte-oriented messages.

The steps to be taken by the tester to create a new validation are as follows:

1. From the “File’” menu, select “New”; enter vendor and DUT information and select a
filename for the validation information file; click “OK” in next popup window to continue or
“Cancel” to abort.

2. If OK is chosen, then the name of the “.inf” file appears in the titlebar of the main window,
and the DSS Validation Suite window appears in the main window.

3. At any time once a validation information file is opened, it can be viewed and modified by
selecting “Vadidation Info” under the “File” menu.

4. If thetester wishes to maintain request, facts, response, and results files in a directory other
than the one contain the dssvs executable, then at this time “Open” should be chosen from the
“Fle’ menu, and the desired “.inf” file should be opened (even if it's the same one that was just
created). This allows Windows to recognize this other directory as the working directory.

3.4 Configurea Test

Before configuring any test parameters, the user should first create a new validation or open one that
already exists (Section 3.3). From the DSS Validation Suite window, the user selects a test to
configure. Clicking on the appropriate button, the Test window appears. From here, the
“Configure” button should be selected. At that time, a Configuration window will appear. The
appropriate selections should be made, in order to configure the test for a particular DUT.

Once configuration is completed, and the “OK” button is selected, then the Test window is activated,
and the “Conf” box is checked. The next step is to generate request and facts files (Section 3.5).

15

Note: Once the “ OK” button has been selected in the configuration window, the configuration
information is recorded and the corresponding check box is noted in the test window. If any
configuration information had been saved previously, then it will be overwritten! [f the tester
wishes to just view the old configuration information, and not overwrite it, then the “ Cancel”
button should be selected.

® Primality Test
Selection: -Modulus sizes to be tested
® POQG Generation Test
Selection: -Modulus sizes to be tested
® Key Generation Test
Selections: -Pseudorandom number generation method to be used by the DUT to
generate x values (SHA-1, DES, ANSI X9.17)
-Source of PQG triples used in generating the key pairs (DUT, DSSVS).
-Modulus sizes to be tested
® Signature Generation Test
Selections: -Pseudorandom number generation method to be used by the DUT to
generate X and k values (SHA-1, DES, ANSI X9.17); irrelevant if DSSVS
provides x values, or if DUT does not provide XSEED, XKEY, and KKEY
values.
-Source of PQG triples used in generating the key pairs (DUT, DSSVS).
-Source of x values (DUT, DSSVS).
-Modulus sizes to be tested.
® Signature Verification Test
Selections: -Modulus sizes to be tested
-Pseudorandom number generation method to be used by the DUT to
generate x values (SHA-1, DES, ANSI X9.17)
e Verification of Received PQG Vaues Test
Selections: -Modulus sizes to be tested

® SHA-1 Test

16

Selection: -DUT designed to correctly hash different types of messages (bit-oriented,
byte-oriented)

3.5 Generate Request File (and Facts File)

When a user is ready to generate a request file for a test, one should first check that there is a
“pag_file’ located in the working directory, and that it in fact contains the correct values.

e Primality Test

Time: Very lengthy

Note: Depending on the PC used to run the DSSVS, it will take several hours to generate this
file. The number of values generated is calculated by the DSSV'S, based on the quantity and
vaue of moduli selected. The facts file records each number generated, along with a“P’ or “F’
to indicate whether the value should pass or fail a primality test.

Below is a partia list that shows how many values per modulus size that the DSSV'S will
generate, based on the number of values of modulus sizes chosen. For any combination of
modulus sizes chosen, the DSSV S will determine the proper number for each modulus size. This
determination is made based on the amount of time it takes to generate a pgg set for each
modulus Sze (see the note in section 3.7). Thismethod is also used in the PQG Generation Test
and Veification of Received PQG Vaues Test to determine how many values to generate/test.

17

Modulus Sizes

Number of values to be generated/tested per modulus size

All sizes selected | 512, 768,1024 | 960, 1024 1024 only
512 15 15 - -
576 15 - - -
640 13 - - -
704 9 - - -
768 7 15 - -
832 6 - - -
896 4 - - -
960 3 - 7 -
1024 3 7 6 10

® POQG Generation Test

Time: Very quick
Note: The request and facts files indicate the number of PQG sets to be generated for each
identified modulus size. See the table under “ Generate Request File: Primality Test” above for

an idea of how many values will have to be generated by the DUT.

® Key Generation Test

Time: Very quick

Note: Therequest file indicates that the DUT must generate 10 key pairs for each modulus size
(this number is fixed). If the test was configured for the DSSV'S to provide PQG sets to the
DUT, then one PQG set is pulled from “pqg_file” for each modulus size. The request file dso
indicates the pseudorandom number generation method that the tool expectsthe DUT to usein

generating a private key, X. (No factsfileis generated for thistest.)

® Signature Generation Test

Time: Very quick
Note: One key pair is generated per modulus size, and 10 pseudorandom messages are generated
per modulus size; al of these are placed in the request file. (No facts file is generated for this

test.)

18

® Signature Verification Test

Time: Quick

Note: For each modulus size selected, 3 XY key pairs are generated by the DSSVS. For each key
pair, anumber of messages and sgnatures will be generated; this number depends on the number
of modulus sizes selected. Regardless of the number of modulus sizes chosen, the DUT will be
required to perform on the order of 100 verifications, according to the chart below:

#Mod sizes selected | # Key pairs/mod size | # Signatureskey pair ‘ Total # Signatures

1 3 36 108
2 3 18 108
3 3 12 108
4 3 9 108
5 3 7 105
6 3 6 108
7 3 5 105
8 3 4 9%

9 3 4 108

Some of the messages in the request file are paired with “bad” signatures. The factsfile indicates
what the proper result should be for each signature verification, “P’ or “F”".

e Verification of Received PQG Vaues Test

Time: Quick-to-several minutes

Note: PQG values are selected from “pqgg_file”, and some of the sets are modified so that an
attempt to verify the values will fail. The number of values per modulus size is determined by
the number and value of modulus sizes selected. See the table under “ Generate Request File:
Primality Test” above for an idea of how many values will have to be generated by the DUT.
Generating the facts and request files may take a few minutes due to the tool generating large
“bad” primes (i.e., vaduesfor p that are not prime). In some instances, there may be 15 pqg sets
tested for a particular modulus size - therefore, the pgg_file should have at least 15 pgg sets per
modulus size.

19

® SHA-1 Test

Time: Lengthy

Note: Three different sets of values for SHS testing are generated. The request file contains
various messages that are to be hashed. The facts file contains the correct message digests that
were generated on the messages in the request file.

3.6 Verify Response File

Before verifying a response file for a particular test, the tester should first check that the response
file and associated factsfile (if one was generated by the DSSV'S) are both in the working directory.
In the DSS Validation Suite window, a test should be selected. The Test window then indicates
whether or not the results have been verified. A response file may be verified multiple times, and
whenever verification is complete, the “Ver” checkbox is marked. Information on verification
resultsis stored within the vaidation information file, and thisis used to update the results file (.out)
when the “ Generate Results File” item is chosen under the “ Utilities” menu.

This section describes how the DSSV S performs verifications of results for each test. The amount
of time to perform verification depends on how many modulus sizes were selected, and whether the
DSSV S has to perform re-calculations or just smply compare stored values. Note that if there are
alarge number of failuresto verify correctly, or there are no successful verifications, then this may
indicate that the wrong facts file or response file is being used, or the response file is formatted
incorrectly. Please see Appendix D and the sample files to make such a determination.

e Primality Test

Time: Quick

Verification method: DSSV S compares results (“P’ or “F’) in the “prime.fax” and “prime.rsp”
files.

Note: Inthe “primersp” file, a“P’ indicates that a number was determined by the DUT to be
prime, and an “F’ indicates that the DUT found the number to be non-prime. The DSSV S will
accept aresponse as correct if it is either the same as the stored value (e.g., P/P, F/F), or if the
responseis non-prime (“F’), when the stored value is prime (“P’). This later result is acceptable
because a DUT may be using a more robust primality test than the one found in Appendix 2.1
of the DSS.

(When aresultsfileis generated, under the Primality Test there will be a line stating “ suspect
results on these entries: # #...” The numbers (#) reflect the particular results which indicated
“F” when the DSSVSindicated “ P”. The probably that this will occur is extremely small.
However, if this does occur, then the tester should determine what primality test is being used
by the DUT, and contact NIST.)

20

Each time the response is “P’ when the stored value is “F’, then during verification a message
box will indicate “ Error: No match, prime number n”, where it isthe n™ tested value in the entire
file (not in the particular modulus Size). In order to continue, the “OK” button must be selected.
The final results will indicate how many prime numbers were correctly identified.

® POQG Generation Test

Time: Lengthy

Verification method: DSSV S re-cal cul ates values submitted in “pgg.rsp”

Note: This process can take a while, because the DSSV'S goes through the pgg generation
process defined in Appendix 2.2 of the DSS. If one of the pgg sets is determined to be incorrect,
then amessage box will be displayed, indicating “Error: Bad pgg set #n”, where it isthe n™ pgg
set in the entire file (not in the particular modulus size). In order to continue, the “OK” button
must be selected. The final results will indicate how many sets passed the test.

*Once again, thistest shal not be performed if the DUT cannot provide the DSSV S with values
for SEED, counter, and h.

® Key Generation Test

Time: Several Minutes
Verification Method: DSSV S re-calculates x values (where possible) and y values submitted in
“Xy.rsp”
Note: The DSSVS automatically determines how verification will be performed, based on
information in “xy.rsp”:
1) xkey and xseed both present: DSSV S re-calculates the value for x. In addition, y isre-
calculated as y=g‘modp. If abad x value is found, then a message box appears, indicating
“Error: Not Verified (Bad X): xy pair number <n>".

2) xkey and xseed are NOT present: DSSV'S only re-calculates y=g*modp; x cannot be re-
calculated.

In either case, if abad y value is found, then a message box appears, indicating “Error: Not
Verified (Bad Y): xy pair number <n>". In each case, n isthe n xy pair in the entire file (not
in the particular modulus size). The final results will indicate how many key pairs passed the
test.

When XKEY and XSEED areincluded in the response file, and this test is passed, the validation

certificate issued by NIST will reflect that either 1) both x and y were tested, or 2) just y was
tested.

21

® Signature Generation Test

Time: Quick-to-several minutes

Verification Method: DSSV S re-calculates signatures (where possible), or else usesy to verify
asignature.

Note: There are three possible scenarios for verification, based on what data is provided in the
responsefile:

1) If both an x and KKEY value are present, then a signature can be re-calculated by the
DSSVS.

2) If x (but not KKEY) is present, then the public key, y, isre-calculated using x, and y is
then used to verify the signature.

3) If neither x nor KKEY is available, then the y value in the “xy.rsp” file is used to verify
the signature.

When a signature is incorrect, it is indicated by a message box: “Error: Bad Signature <n>",
where nisthe n” signature in the entire file (not in the particular modulus size). The fina results
will indicate how many signatures were verified to be generated correctly.

® Signature Verification Test

Time: Quick

Verification Method: DSSV'S compares results (“P” or “F”) in the “versig.fax” and “versig.rsp’
files.

Note: If aresult in the response file does not match the stored value in the facts file, then a
message box indicating “Error: Not verified: Sig number n” is displayed, where n is the n
signature in the entire file (not in the particular modulus size). The final results will indicate how
many signature verification passes and failures were correctly determined.

o Verification of Received PQG Vaues Test

Time: Quick

Verification Method: DSSV S comparesresults (“P’ or “F’) in the “verpgg.fax” and “verpqg.rsp”
files.

Note: If aresult in the response file does not match the stored value in the facts file, then a
message box indicating “ Error: Not verified, pag set number n” is displayed, where n isthe n™
pag set in the entire file (not in the particular modulus size). The final results will indicate how
many pqg set verification passes and failures were correctly determined.

® SHA-1 Test
Time: Quick
Verification Method: DSSV S compares message digests in the “sha.fax” and “sharsp” files.

22

Note: For each of the three SHS tests, a stored message digest value is compared with its
corresponding value in the response file. 1f a message digest does not compare, then a message
box indicating “Error: Failed SHS Type n Test” is displayed, where n is one of the three SHS
tests. Thefinal results will indicate whether each of the three tests was passed or failed.

3.7 Supplemental Files

The DSSV S tool includes severa supplemental files which may be used when conducting tests.
Firg, thereisafile containing aseries of pgg values. There are multiple sets of these values for each
modulus size, from 512 to 1024 bits. Each set includes the following values. p, g, g, h, SEED, and
counter. The latter three values are needed to regenerate the first three values. This file may be used
by the DSSV S when generating request files for the Key Generation, Signature Generation, Signature
Verification, and Verification of Correct p, g, and g tests. At any time, the “ Generate PQG” item
under the “Utilities” menu can be selected to generate a new file of pgg values. However, the
DSSV S user should be aware that this can be a very time consuming task, depending on the number
of modulus sizes selected, and the number of pgg sets to be generated for each size. It ispossible
to cancel this process after it has begun, however this will take effect only upon completion of the
pag set being generated.

Note: Below is an example of the average time to generate one pqg set, using Version 2.2 of the
DSSVS The values were generated using a PentiumPro, 200MHz PC. Thetimeisthe average time
to generate one pgg set, based on the generation of 10 pgg sets per modulus size.

Modulus Sze (bits) Avg.Time/PQG Set (minutes)
512 0.8
576 1.3
640 2.0
704 3.3
768 34
832 4.7
896 5.7
960 8.4
1024 11.1

In addition to thefile of pag vaues, a set of example test files (information, request, facts, response,
and output files) isincluded with the DSSV'S, so that a user can test the full functionality of the tool.

23

4. MESSAGE FORMATS

Information that is conveyed between the DSSV'S and the DUT will be in the form of messages.
Reguest messages are generated by the DSSV'S; response messages are generated by the DUT
vendor. Request and response messages shall have both header and data portions. The header
portion shall indicate one of the four options and whether the information in the data portion is a
request or response (e.g., SHS Request Type 1, DSS/APP.S Response Type 3). The delimiters H>
and <H shall be used to indicate the beginning and ending of the header portion. The data portion
shall consist of ASCII characters and shall be terminated with an ASCII ETX character (*). In
addition, will be used to separate keys and data within messages. Other white space characters,
such as blank or line feed, may aso occur in messages. In the data portion of a message, one or more
white space characters must separate two data strings that are not separated by . The delimiters D>
and <D shall be used to indicate the beginning and ending of the data portion.

4.1 Conventions

The following conventions are used in the data portion of messages between the DSSV'S and the
DUT:

1. Integers. integers will be unsigned and will be represented in decima notation or
hexadecimal notation.

2. Decimal characters: the ASCII decimal characters to be used are the characters 0-9.

3. Hexadecima characters: the ASCII hexadecimal characters to be used are the ASCII
characters 0-9 and A-F (or af), which represent 4-bit binary values.

4. Space characters. In the following descriptions, the notation ¢ represents one or more ASCI|
white space characters, such as spaces, line feeds, and tabs. However, ¢ isnot alegal character
in messages. In parsing datain amessage, the recipient should read through all characters except
0-9, A-F, af, and "

4.2 Message Data Types

The following data types are used in messages between the DSSV'S and the DUT:

1. Digest: adigestisastring of 40 hexadecimal characters that represents a 160-bit string. The
characters must be contiguous.

2. Decimd integers: adecimal integer has the form

dddd ... dd

24

**

where each ‘d’ represents adecimd character (0-9); one or more characters are present. The characters
must be contiguous.

3. Hexadecimal integers. a hexadecimal integer has the form
hhhh ... hh

where each ‘h’ represents a hexadecimal character (0-9, A-F, af); at least two characters are present.
The characters must be contiguous.

4. Compact strings: bit strings will be represented in compact form. A compact string has the form
zOboOnN o< ...on,

where z isadecimal integer greater than zero that represents the number of n,, b iseither 0 or 1, and each
n isadecimal integer representing a positive number. The length of the compact string is given by the
summation of the n,.

Note: Code for manipulating compact strings may be found in the “ demoutil.c” file, in the “ source’

directory. Thefunction* hashstring()” can be used to convert a compact string into a bit representation
that is used for hashing. The function “ genstr()” generates a compact string on the fly, rather than
converting fromagiven hex value. |If the vendor requests a conversion utility for compact strings, the
vendor may be provided with “ demoutil.c” .

The compact string is interpreted as the representation of the bit string consisting of b repeated n, times,
followed by 1-b repeated n, times, followed by b repeated n, times, and so on. Example: suppose

M=501070130501¢2
wherez =5and b = 1. Then the compact string M represents the bit string
1111111000000000000011111011

where 1 isrepeated 7 times, O isrepeated 13 times, 1 isrepeated 5 times, O isrepeated 1 time, and 1 is
repeated 2 times.

4.3 Syntax for the SHS Option

For the SHS Option, there are three request types and three corresponding response types.

25

43.1 SHSTypel
1. SHS Request Type 1, which supplies 1024 messages of varying lengths, shall have the format
M, AMLAN A Mg
where each M, is a compact string of lengthi for 1 < i < 1024.

In cases where the DUT is only to be tested for byte-oriented messages, then 128 messages of varying
lengths are supplied, and thus SHS Request Type 1 has the format

M, A M, LA Mg
where each M, is a compact string of length 8*i for 1 < i < 128.
2. SHS Response Type 1, which contains 1024 message digests for the 1024 messages from SHS
Request Type 1, shall have the format
D, AD,N oA Dy ™
In cases where the DUT is only to be tested for byte-oriented messages, then 128 message digests
corresponding with the messages from SHS Request Type 1 are supplied by the DUT, and shall have
the format
D,AD,M ... A Dp”
Whether there are 128 or 1024 message digests, each D, is a 160-bit digest of the message M,, generated
using SHA-1.
4.3.2 SHSType 2
1. SHS Request Type 2, which supplies 100 messages of length > 1024, shall have the format
Mg M, 2 A Mg A

where each M; is a compact string of length between 1032 and 102408 bits for a DUT hashing byte-
oriented data, and between 1025 and 102401 bits for aDUT hashing data of an arbitrary bit length.

2. SHS Response Type 2, which contains 100 message digests for the 100 messages from SHS Request
Type 2, shall have the format

26

Dy AD, " ... N Dgy A
where each D; is a 160-bit digest of the message M..
4.3.3 SHSType 3
1. SHS Request Type 3, which supplies a seed message, shall have the format
M A
where M is a compact string of length 420.

2. SHS Response Type 3, which contains 100 message digests using the seed from SHS Request Type
3, shdl have the format

where each D; is a 160-bit message digest.

4.4 Syntax for the DSS Tests

Using the correct syntax for creating the DSS test response files isimportant for the correct verification of
those results by the DSSV'S. Except for the modulus size (all .rsp files), and counter value (in “pgg.rsp” and
“verpgg.rsp”), which are in decimal format, all number values must be presented in hexadecimal format.
Three of the response files (“primersp”, “versig.rsp”, and “verpgg.rsp”) include a Pass/Fail result in the
formof “P’ or “F’. Each modulus szeisindicated by “[mod=##]". All alphanumeric values are preceded
by “tag=", where there is ablank space between the equals sign and the subsequent value (There is no blank
gpacein the case of the modulus size indicator.). Please see Appendices C and D, as well as the electronic
sample response files, for the correct syntax of DSS test values.

45 File Formats

The format of request files can be found in Appendix C, and the format of response files can be found in
Appendix D. Note that these appendices show what all message types look like in arequest or response
files. Request files are generated by the DSSV'S, while response files must be generated by the vendor/tester,
so that they can be properly handled by the DSSVS. Factsfiles are generated automatically by the DSSV'S,
and therefore sample facts files are not presented in any appendix to this user’s guide.

27

APPENDI X A: Validation Information File Format

The following is an example validation information file, which can be modified manualy, if necessary:

[Vendor]

file_name=sanpl e.inf

product _nane=DSS Soft war e

version=1.0

i mpl _type_sw=Yes

i mpl _type_fw=No

i mpl _t ype_hw=No

processor=Intel Pentium W ndows95
vendor _nanme=Jin s LLC

vendor street=813 Chestnut Tree Drive
vendor _citystatezi p=Annapolis, MD 99999
vendor _cont act =Ji nbo Jones

vendor _phone=(410) 123-4567

i nternet _address=jinbo.jones@inbollc.com

[Primality]
confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768
suspect =19

t ot al =30

mat ched=30

[PQT
confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768

t ot al =30
mat ched=30
[XY]

confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768
x_verified=YES
random net hod=SHA- 1
pqg_sour ce=DUT

t ot al =20

mat ched=20

[GenSi g]
confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768
random net hod=SHA- 1
pqg_sour ce=DSSVS
X_sour ce=DSSVS

t ot al =20

28

mat ched=20

[Ver Si g]
confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768
random net hod=SHA- 1
total =108

mat ched=108

[Ver PQQG

confi gur ed=Yes
gener at ed=Yes
verified=Yes
nods=512 768

t ot al =30

mat ched=30

[SHA- 1]
confi gur ed=Yes
gener at ed=Yes
verified=Yes
Dat aSi ze=BI T

t ypel=Passed

t ype2=Passed

t ype3=Passed

29

APPENDI X B: ResultsFile Format

The following is an example resultsfile:

DSS Validation Suite Results for "DSS Software"

Primality Test:
Mod sizes selected are: 512 768
Primality Results: 30 verified out of 30
Suspect results on these entries: 19

Ceneration of PQG Test:
Mod sizes sel ected: 512 768
Ceneration of PQG Results: 30 verified out of 30

Key Ceneration Test:
Nunber of XY sets per nod size: 10
X and Y tested for correctness
Random nunber generator type is: SHA-1
Mbd sizes sel ected: 512 768
Ceneration of XY Results: 20 verified out of 20

Si gnature Generation Test:
Random nunber generator type is: SHA-1
Mod sizes selected: 512 768
Signature Generation: 20 verified out of 20

Signature Verification Test:
Mod sizes selected: 512 768
Signature Verification: 108 verified out of 108

Verification of Correct CGeneration of P, Q and G Test:
Mod sizes sel ected: 512 768
Verification of Correct CGeneration of PQG 30 verified out of 30

SHA-1 Test:
SHA-1 tests are configured for "BIT" oriented inplenentations
SHA-1 Test results for:
Messages of Varying Length: Passed
Sel ected Long Messages: Passed
Pseudor andom y Gener ated Messages: Passed

30

APPENDIX C: Request File Formats

This gppendix shows the formats for the seven request filesthat can be generated by the DSSVS. These files
are created when the “Generate” function is chosen for each corresponding test. As in the actual files,
comments below are indicated with a“#” located in the first position of the commented line. In the request
filesfor the DSStests, information at the beginning of each file lists what options were selected for the test,
so that the tester generating the response files will know what information to include in those files.

Note that for the DSStest files, there should be one blank space between each equals sign and the number
which follows (except for the modulus size indicators).

C.1 SHS Request File Format (“sha.req”)

All three SHS request types make use of compact strings to express messages, to minimize the file size.
The format for compact strings is explained in section 4.2 of this document. Code for manipulating
compact strings may be found in the “ demoutil.c” file, in the “ source” directory. Spaces between the
compact string and ‘' are not included in the actual file.

H>SHS Request Type 1<H
D>
conmpact _string[O] "

conpaét;siring[1024]A
<D

H>SHS Request Type 2<H
D>
conmpact _string[0] ~

conpabt;siring[QQ] A

<D

H>SHS Request Type 3<H
D>

conpact _string "

<D

C.2 Primality Test Request File Format (“prime.req”)

Configuration information for "DSS Software"

Mbd sizes selected are: 512 768

[mod=512]

Pri ne=99dd9a2859h94200927cc5ca34754ad421ce8eaB869aef bad3990cf 2c0485ecc49bb5a5d9957356
59b0f 02328f dd3dc82614c774cf a8b120c4c2ec009cdf c564d

Pri me=bf f c22229ba35bd4f 4650f 7b120b96bb057890979d4a7da2b6e7le3dbc634caelee33d4e6546f 0
669f 552b151904e89b553510e€994862d6f c88cch8792df 301f

Pri ne=a3c03f 6f c2b64c61063914cbc102eeb9d56c394a6f 71022d2c4el1d07f 7043eef eecabec53de2f e
2a003f 551494ba3a7086b952535bb0332723450b75¢c63296d3

31

[mod=768]

Pri me=df c03ba47720d7f cb374a2a5b75779d372dccf 93bbf a855bbd524335b94b2c83b5f bch25007c2b
77a24ecd5e67eel6bebaf 585f 1216c4bed47030f d2b618f 175e84868dc3ca78a5ddd3860302f e4c35a2ch
292e1e9ee02b001217ce60f 9802af b

Pri me=b1a804675d427b2b29a6d6d61da575e06328e574ba8ccc1d995476f 90da2el183al166784edeecc?
ad829a70831d4cf ceba08ddabb0c14e3474304643aac0f 6b35c05cc4dlaa8eaf 8b0c69929e601lacda835
f 4d5d9082666b237e62dlac5f 838b7

Pri me=f 94c4f 626a389d869bf 3d2cbcf 9b354acd43d028967e746f 75306d89af c61d0736a21b95¢c78e50
1f d22e54d6c11e1c094f d1590480ac688ed16469d3e59c4c9dba97963e22aec43f 2d2228643541469e4c
19ab07a9957d9ec6851e002b1b8de9

C.3 PQG Generation Request File Format (“pgg.req”)

Configuration information for "DSS Software"
Nunber of PQG sets per nod size:

Mod sizes selected: 512 768

[md=512]

N= 15

[md=768]

N= 15

C.4 Key Generation Request File Format (“xy.req”)

Note that in actuality, the DSSV S tool requires a fixed value of 10 key pairs per modulus size.

Configuration information for "DSS Software"
Nunber of XY sets per nod size: 10

Random nunber generator type is: SHA

Mod sizes selected: 512 768

HHHH®

C.5 Signature Generation Request File Format (“gensig.req”)

Configuration information for "DSS Software"

Nunber of Signatures and Messages per nod size:

Random nunber generator type is: SHA

Mbod sizes selected: 512 768

[md=512]

P=8df 2a494492276aa3d25759bb06869cbeac0d83af b8d0cf 7cbb8324f 0d7882e5d0762f c5b7210eaf c2
e9adac32ab7aac49693df bf 83724c2ec0736ee31c80291

Q= ¢c773218c737ec8ee993b4f 2ded30f 48edace915f
G=626d027839ea0a13413163a55b4cbh500299d5522956cef ch3bf f 10f 399ce2c2e71chb9de5f a24babf 58
e5b79521925c9cc42e9f 6f 464b088cc572af 53e6d78802

XKey= 1234567890123456789012345678901234567890

XSeed= 00

X= 436f 11f bb83abh498016c4942152a83c0090934a2

Msg=c713d10f f 3357345ddf bbf e623abdb5f 010934677683becd9a9f 70863f a3f af 6c783c97e450f 3e48
d85d2a4f 44758db1d13c903969a3c028ed108d44d70c0224162f c6ba2649542170d277a9e1940920cd97
ec63064d492638f e0800887790ba6def c1d9ce392e695d319f 0c3360c744acf 242f d85dad25e3543dbd1
883alc51

32

Msg=829bb0f 3733944b857519a9270313f b42725881f 1f a2d3699ab6f cd012af 1e80100b8b224f a00ea5
160c6050d35f e809f 408b7df Obf dc4df 222f 64155b2d0de0cc174c7b99c604c95339e86191433bdacd73
€c75881441c5782860bb79d0c62097097e9188a039dbbc6b02cdbe433b0c06a3eb0albacd556a7493e9cf
0f a49592

C.6 Signature Verification Request File Format (“versig.req”)

Configuration information for "DSS Software"

Random nunber generator type is: SHA

Mod sizes selected: 512 768

[rod=512]

P=bd0669882bed2f 2937b74c7a34db1e607b4250915590f aebc8939b60ef 8e1d53c165b67019¢c4772e00
beace035db809b059da89d5e9d6557d2332ccd29c2d00b

= 9clbaeb5l5cla397e753ac4f 8c3c389721a8ealbf

G=2d7344df b83c1dbh8a23c4139b0dbf cc62df 17eb56b4eaab32f 2674e650ca079823863€1954a8310808
b25ea8891bf 7c6b63262a029a52647557bh68d3ce6094d7

Y=7f 54905620066405€a62787f 4512ddc2ca033106be2040d999af 661375506f 57f 0e63594c660c2cdd21
6e6e167c953112b4bd4893e0672d7b3cf 8f e17e5008790

Msg=5f f ae3a6029225f 5f 7deb58060b83516¢c11a595deddebeaf 33b42b34c464bc4068460def 61f f 54f e
9f 7deled27352a53bd9c1281d9e47a5bc9f 80a7223bad1666e7chb7c10bdc27b7a2519cc93c304d16385
9bh8501f 85156hf 42c03f 935db72ac9958685e7458923elcef 3557ed8dc480acd8ea23d920c586b88e4d3
eec33743

Si g=5586be9c5254d464ce9822dcdd28752236768e2d5ab5b3e9779eba87b5cf 1091f 51438750e3f e9el
Msg=43d10f 06aebe6f bec02aed0771bf 6bcal0e092a811a65c3¢c36427650f 690b50d8ecde92d2d46d027¢c
46ae7aee032d58e504ba370c5351eb8d2c4abbd855c2e2b3bb4848824ecc7dd91ec5f 73f b6a28c45b974
33c8bbdof 782622c3cd8beea37df e568a7af d3b3d9ed80c8dbh9443f 5f f 03678f 944c0bd5e0bc3f 2462a6
5¢5d4675

Si g=26e6b7441de0208f 3af 15217319bf Oaaf d913a2688cf 59f e0e7423d97dc2d816d5124e800b210eac

C.7 Veification of Recelved PQG Values Request File Format (“verpgg.req”)

[mod=768]

P=abbb6aa9760c7f 3671c013c1c712a2ac907f 5924ebf 7€3a3892¢9111263864287850c585253d807654
923184d7e47745ebbf 001f 1leac5f ce88d13bc564d126a56¢hf f 89bddc28d69f 1a00013c6bf 5a63141cab
adaf f 1850cebc0c50d40b19581

= dbd8daaacc4f 27f c05508757259e27e975bf dc2f
G=9ed9ab75abe9450372h95843df 66a006a50097c4b6563f 377882a3d8bedelb4b7f e055cf 4ee62c6bc3
f 977ed0553a9953¢c21bd4901be016a4b7558311e2c409e7ad6ef 666a06f 217c531al757adb4669b2e0da
82a0903d71deed11632ef 131ca
H=00
00
00000000000000000000000002

Seed= d5014e4b60ef 2ba8b6211b4062ba3224e0427¢eea

c= 162

P=d035088552dbaeled41f e0374471511b6b190celb3b1lb79b5d1f af Of 11ee876e02a9f 66442b4694649
d75cf 8185908cf 2ac5bda8e49aeab90f 0c530ba5643b85f bca7cf 3df bbb85e572421d4123150daa05f 97
4d38b8a0776eb0da7176601861

Q= e2867218b7a25f d993d0178alb0alab7bf ae3cdl

33

G=9248eab5f 6f 59bf 5c114925ad7c53ce2985¢c9f 4c25255dd8be092932f 99f 950499158ed448f 99e61de?2
1ed4935e85604c412c8d88bf 1f 663ed5bb7f 3a04f f 498ccb9121007850bf 46f a38cf 35105e1d7f dd25c6e70
H=00
00
00000000000000000000000002

Seed= c5cc4392f 040af 1521d166af bad4b75bf 634b0e2

c= 153

APPENDIX D: Response File Formats

This appendix shows the formats for the seven response files that are to be generated by the DUT. The
DSSV S expects these files to be in the formats indicated below. When a response file is present for a
particular test, and the “Verify” function is chosen for that test, then the DSSV S is able to properly check
the correctness of the DUT’ s test results. Asin the actual files, comments below are indicated with a“#”
located in the first position of the commented line. Here are some basic guidelines for generating response
files:

1) For al responsefiles (except for the SHA-1 test, and for modulus size indicators), there should always
be a blank space between the equals sign and the value that follows,

2) There should be no blank lines,

3) The first character of all variable names should be in the first column, and should be capitalized
(except for the lowercase “c” for the pgg counter value, and the “result” variable),

4) The variable names should be spelled (and have the same case) as specified in the following examples
aswell asin the sample files accompanying the DSSV'S, and

5) There should be no padding after the last character of a value, and each line should be terminated
immediately thereafter using a NEWLINE character. (Note that the tool will not function correctly if
CARRIAGE RETURN/LINE FEED is used to terminate aline.)

D.1 SHS Response File Format (“sha.rsp”)

Code for manipulating compact strings may be found in the “ demoutil.c” file, in the “ source” directory.

H>SHS Response Type 1<H
D>
digest[1] ~

di gest [1024] A

<D

H>SHS Response Type 2<H
D>

digest[0] ~

digesi[§9j A
<D

H>SHS Response Type 3<H

D>
digest[0] ~

digesi[§9j A
<D

35

D.2 Primality Test Response File Format (“prime.rsp”)

Configuration information for "DSS Software"

Mbd sizes selected are: 512 768

[mod=512]

Pri ne=99dd9a2859h94200927cc5ca34754ad421ce8eaB869aef bad3990cf 2c0485ecc49bb5a5d9957356
59b0f 02328f dd3dc82614c774cf a8b120c4c2ec009cdf c564d

result= P

Pri me=bf f c22229ba35bd4f 4650f 7b120b96bb057890979d4a7da2b6e71le3dbc634caelee33d4e6546f 0
669f 552b151904e89b553510e€994862d6f c88cch8792df 301f

result= P

Pri ne=a3c03f 6f c2b64c61063914cbc102eeb9d56c394a6f 71022d2c4eld07f 7043eef eecabec53de2f e
2a003f 551494ba3a7086b952535bb0332723450b75¢c63296d3

result= P

Pri ne=be687acf df 48786ef f c6e9542ba9ef 88b242af dalee5d4bedel47ded63118010e245e6c6280591
1bcf 3bdf 67295cf d9719f a8f 53665e7f 2a8793a64ac919f dal

result= P

Pri me=f 92b83f 33601ba3926f c986b433cc34971f c1626f 9c1f 2ae736145756015555ad22d0f b8333755
57ed4c0f a918a5e871e222615c20a5f f ec909f 7a196e5919f 9

result=F

D.3 PQG Generation Response File Format (“pgg.rsp”)

[mod=512]

P=824c1c23066aeaf a74b40cbf cb2f f d47baed14e5edc3c929f 81e2b2f bdf ec178939b8aebac70869e4e
ad77653ec497837eala201f 878f c72ec609eb66eed3a9b

Q= e4b5d099504cf Of 208ad237blc3af 79f 31cf 19bf

G=493509dd3f 575e14306aa5a3106c14dd528f 2966d9dc8d2136a1b39f 9ce87d533bc756cab9f af 27a82
8202845d44401ba453db62a28c02b42910c64f ala9e3f 2

Seed= 4b5f 92cf de7822b28df elc264ec085a3b7df 82ed
H=00
0002

c= 123

P=f a78f 57cbbf d802d1f cb743eedOcabf 2648bee5d89e5b067ad8c64c55f f 0b3c2f 755b60a5340f bcch2
3c0adc8158724ec8dcd580f 8c4c16f 8d924c5bclae76¢h

Q= bf 4dc8f 35bc250d2f 8d95f 36¢c95841b2616f 0533

G=7b669f a6609e12f ab02e810a494e49db20b9bf 24aa7765d5f 6ac100a4801d1d667clla7a77ea7c0cdO
ec83b9ab844bc3d9a3c5d8910019ecdd2b1c8691649f 7f

Seed= 4b5f 92cf de7822b28df elc264ec085a3b7df 8311
H=00
0002

c= 109

D.4 Key Generation Response File Format (“Xxy.rsp”)

Configuration information for "DSS Software"

Nunber of XY sets per nod size: 10

Random nunber generation nethod is: SHA-1

Mod sizes selected: 512 768

[md=512]

P=bd0669882bed2f 2937b74c7a34db1e607b4250915590f aebc8939b60ef 81d53¢c165b67019¢c4772e00
beace035db809b059da89d5e9d6557d2332ccd29c2d00b

= 9clbaeb5l15cla397e753ac4f 8c3c389721a8ealbf

36

G=2d7344df b83c1db8a23c4139b0dbf cc62df 17eb56b4eaab32f 2674e650ca079823863e1954a8310808
b25ea8891bf 7c6b63262a029a52647557b68d3ce6094d7

XKey= ¢92190894f 57ad80cdf 653d0b48319dc3a373acc

XSeed= aedf c3d13bdal701f Ocb2f 5f bb61e426a6da792a

X= 1be8f 6ac9cal026b3a8cf 459350c86140801a34a
Y=1988427903e2d627c9acf 47e4f 73cc91f e732cdala387aba8123f 59a5e960326e78d3cd38d483d9022
38ee3739e104ebc051e07313e1417b5¢c9757e35edcof ef

XKey= e50a8735ebf 8af ec08834829e98f 9f f 04238del7

XSeed= aedf c3d13bdal701f Ocb2f 5f bb61e426a6da792a

X= 57bce9a497017dd68cc683f 4361f e03f 6b56c615

Y=al1lc10720cbb29f f 075c64cb39eb2022f 566cc71e5f b17c4cc59b4a640936130e33d53ba922f e2d389d
3aladce25733d96ef 58d9c9f 80c1f a68012bc066e44chc

D.5 Signature Generation Response File Format (“gensig.rsp”)

Note that if the DUT can export the value for KKEY/, then it should be placed in thisfile, between the
G value and the Msg vaue.

Configuration information for "DSS Software"

Nunber of Signatures and Messages per nod size: 10

Random nunber generator type is: SHA

Mod sizes selected: 512 768

[md=512]

P=8df 2a494492276aa3d25759bb06869cbeac0d83af b8d0Ocf 7cbb8324f 0d7882e5d0762f c5b7210eaf c2
e9adac32ab7aac49693df bf 83724c2ec0736ee31c80291

Q= ¢c773218c737ec8ee993b4f 2ded30f 48edace915f
G=626d027839ea0a13413163a55b4cbh500299d5522956cef ch3bf f 10f 399ce2c2e71chb9de5f a24babf 58
e5b79521925c9cc42e9f 6f 464b088cc572af 53e6d78802

X= 436f 11f bb83abh498016c4942152a83c0090934a2

Msg=c713d10f f 3357345ddf bbf e623abdb5f 010934677683becd9a9f 70863f a3f af 6c783c97e450f 3e48
d85d2a4f 44758db1d13c903969a3c028ed108d44d70c0224162f c6ba2649542170d277a9€1940920cd97
ec63064d492638f e0800887790ba6def c1d9ce392e695d319f 0c3360c744acf 242f d85dad25e3543dbd1
883alc51

Si g=2e5564f c37352b7eac6119d1d37d3c9e5124801e13f 0891adcbf 9f bcbh85dbad49d64a2f dc5821a5dc
Msg=829bb0f 3733944h857519a9270313f b42725881f 1f a2d3699ab6f cd012af 1e80100b8b224f a00ea5b
160c6050d35f e809f 408b7df Obf dc4df 222f 64155b2d0deOcc174¢c7b99c604c95339€86191433bdacd73
€75881441c5782860bb79d0c62097097e9188a039dbbc6b02cdbe433b0c06a3eb0alObacd556a7493e9cf
0f a49592

Si g=a6lef 89219b440779e81950a93641600f 6966d6a72d23f 357065a79a4b547ccaf f f 2f 4ac662544cl

HHHH

D.6 Signature Verification Response File Format (“versig.rsp”)

Configuration information for "DSS Software"

Random nunber generator type is: SHA

Mod sizes selected: 512 768

[md=512]

P=bd0669882bed2f 2937b74c7a34db1e607b4250915590f aebc8939b60ef 81d53¢c165b67019¢c4772e00
beace035db809b059da89d5e9d6557d2332ccd29c2d00b

Q= 9clbaeb5l15cla397e753ac4f 8c3c389721a8ealbf

G=2d7344df b83c1db8a23c4139b0dbf cc62df 17eb56b4eaab32f 2674e650ca079823863€1954a8310808
b25ea8891bf 7c6b63262a029a52647557b68d3ce6094d7

37

Y=7f 54905620066405e€a62787f 4512ddc2ca033106be2040d999af 661375506f 57f 0e63594¢c660c2cdd21
6e6e167c953112b4bd4893e0672d7b3cf 8f e17e5008790

Msg=5f f ae3a6029225f 5f 7deb58060b83516c11a595dedde6beaf 33b42b34c464bc4068460def 61f f 54f e
9f 7deled27352a53bd9c1281d9e47a5bc9f 80a7223bad1666e7cbb7¢c10bdc27b7a2519¢cc93¢c304d16385
9b8501f 85156bf 42c03f 935db72ac9958685e7458923elcef 3557ed8dc480acd8ea23d920c586b88e4d3
eec33743

Si g=5586be9c5254d464ce9822dcdd28752236768e2d5ab5b3e9779eba87b5cf 1091f 51438750e3f e9el
result= P

Msg=43d10f 06aebe6f bec02aed0771bf 6bcal0e092a811a65c3¢c36427650f 690b50d8ecde92d2d46d027¢c
46ae7aee032d58e504ba370c5351eb8d2c4abbd855c2e2b3bb4848824ecc7dd91lechf 73f b6a28c45b974
33c8bbd9of 782622c3cd8beea37df e568a7af d3b3d9ed80c8db9443f 5f f 03678f 944c0bd5e0bc3f 2462a6
5¢5d4675

Si g=26e6b7441de0208f 3af 15217319bf Oaaf d913a2688cf 59f e0e7423d97dc2d816d5124e800b210eac
result= P

D.7 Veification of Received PQG Values Response File Format (“verpgg.rsp”)

[mod=768]

P=abbb6aa9760c7f 3671c013cl1lc712a2ac907f 5924ebf 7e3a3892c9111263864287850c585253d807654
923184d7e47745ebbf 001f 1eac5f ce88d13bc564d126a56¢hf f 89bddc28d69f 1a00013c6bf 5a63141cab
adaf f 1850cebc0c50d40b19581

Q= dbd8daaacc4f 27f c05508757259e27e975bf dc2f
G=9ed9ab75abe9450372b95843df 66a006a50097c4b6563f 377882a3d8bedelb4b7f e055cf 4ee62c6bc3
f 977ed0553a9953¢c21bd4901be016a4b7558311e2c409e7ad6ef 666a06f 217c531al1757adb4669b2e0da
82a0903d71deed11632ef 131ca
H=00
00
00000000000000000000000002

Seed= d5014e4b60ef 2ba8b6211b4062ba3224e0427¢eea

c= 162

result= P

P=d035088552dbaeled41f e0374471511b6b190celb3b1b79b5d1f af Of 11ee876e02a9f 66442b4694649
d75cf 8185908cf 2ac5bda8e49aeab90f 0c530ba5643b85f bca7cf 3df bbb85e572421d4123150daa05f 97
4d38b8a0776eb0da7176601861

Q= e2867218b7a25f d993d0178albOalab7bf ae3cdl

G=9248eabf 6f 59bf 5¢114925ad7¢c53ce2985c9f 4c25255dd8be092932f 99f 950499158ed448f 99e61de2
1ed4935e85604c412c8d88bf 1f 663ed5bb7f 3a04f f 498ccb9121007850bf 46f a38cf 35105e1d7f dd25c6
e70352h911eb85b91f 1cbcac3b
H=00
00
00000000000000000000000002

Seed= c5cc4392f 040af 1521d166af bad4b75bf 634b0e?2

c= 153

result= P

38

APPENDIX E: Description of the SHS Type 3 Test
Thistest determines whether the DUT can compute message digests for messages that are generated using
agiven seed, which is provided in “shareq’. A sequence of 100 message digestsis generated by the DUT
using this seed. The DUT portion of the testing procedureis as follows:

The DUT:
1. Obtains SHS Request Type 3 message M (416 bits) from the “sha.req” file (thisisthe “seed”).
2. Performsthe following test, using M as input:

procedure testSHS(M,DI[0], . . . D[99])
string M,D[(], . . . D[99];

{
integer i, j, &
forj=0to 99 do
{
for i =1 to 50000 do
{
fora=1to(j/4*8+24)doM =M ||'0’; [**0" isthe binary zero bit. */
M:=M [i; I* Here, thevaluefor ‘i’ isexpressed as a 32-bit word
and concatenated with ‘M’. Thefirst bit concatenated
with ‘M’ isthe most significant bit of this 32-bit word.
*/
M = SHA(M);
o
D[j] := M;
}
}

NOTE: In the above procedure, || denotes concatenation. Also, M || i denotes appending the 32-bit word
representing the value ‘i’, as defined in section 2 of the SHS Within the procedure, M is a string of
variable length, determined by the DSSVS itsinitial value is assumed to be input. Together, the initial
length of 416 bits and the expression “ j/4*8 + 24" (wherej/4 isinteger division) ensure that messages
will be of a byte length. Each element of the resulting sequence {D[j]} should be 160 bitsin length.

3. Forwardsthe resulting 100 message digests stored in D[(], . . . D[99] as a sequence in SHS Response
Type 3with D;= D[j]. Thisisthe last section of the “sharsp” file.

39

